Eating Fruit

Beta Version

This game is based on snake, where the player controls a character (the snake) who has to
eat as much fruit as possible before getting too big to fit on the screen. Each time the snake
eats a piece of fruit you get points, but also get bigger. Once you touch the edge of the
screen the game is over! The snake is always moving - the player can only change which
direction.

° eatingFruit

Focus

The most important things to focus on while writing the code for this game:

e Use well-named variables, as much as possible.

e Remember rules for capital letters. Variable names are written in lowerCamelCase
(notice the first letter is a lowercase ‘L’). Class names are written in
UpperCamelCase (notice the first letter is an uppercase ‘U’).

e Most code should be split out into separate functions. You won't just use an ellipse to
draw the player - you will use a drawPlayer() function, and inside that function will be
an ellipse.

[academy of code]

e Concentrate on making the code as readable as possible. It should be easy to tell
what all your code does (using clear variable names and function names helps with
this)

e ADVANCED:

o Once you have built the basic game you will use this as a starting point to
practice writing classes. You will, at the very least, have a Player class and a
Fruit class. Remember that the code for the Player class will go in the Player
tab, likewise for Fruit in the Fruit tab.

NB: This is an advanced lesson! You will need to figure out what variables you need,

alongside lots of other bits - like remembering to put in void setup()! Some code is
provided, but it’s up to you to figure out the rest.

Starting Point

The void draw() of the basic game (before writing classes) will look something like this:

void draw() {

fill(255, 10);

rect(0, 0, width, height);

fill(e):

if (!gameOver) {
drawScore();
drawPlayer();
movePlayer () ;
checkCollision();
drawFruit();

} else {
gameOver () ;

The simplest function, drawPlayer(), is declared like this (remember that this happens after
the end of void draw()):

void drawPlayer() {

fill(e, @, 255);

ellipse(playerX, playerY, playerRadius*2, playerRadiusx*2);
}

[academy of code]

This is the starting point for movePlayer() - note that you will need to add controls for the
other directions:

void movePlayer() {
playerX = playerX + playerSpeedX;
playerY = playerY + playerSpeedY;
if (keyPressed) {
if (key == 'w') {
playerSpeedX = 0;
playerSpeedY = -playerSpeed;
#
}
}

The collision detection works like this:

void checkCollision() {
if (dist(playerX, playerY, fruitX, fruitY) < (playerRadius + fruitRadius)) {
score = score + 1;
fruitX = random(playerRadius, width - playerRadius);
fruitY = random(playerRadius, height - playerRadius);
playerRadius = playerRadius + 10;
}
if (playerX > width - playerRadius || playerX < playerRadius ||
playerY > height - playerRadius || playerY < playerRadius) {
gameOver = true;
i
}

Not the positioning of fruitX and fruitY when there is a collision. Why do we subtract
playerRadius from width?

Other tips

e We have used a transparent rectangle instead of a background - this allows us to
have the trail that you see in the screenshot at the start.

e Most variables should be declared as float data types. gameOver should be a
boolean.

It's best to make score an int - but you can try it as a float to see the difference.
resetGame() is a function which resets every variable you have to its starting
position. It sets gameOver to false, score to 0, etc.

e Once you have made the basic game you can make the player and the fruit look
much cooler using more shapes, adding images, etc. The benefit of the drawPlayer()
and drawFruit() functions is that all those changes will happen with those functions.

e ADVANCED:

o When creating your Player and Fruit classes, remember that all functions to
do with the player will go in the Player class (such as drawPlayer() and

[academy of code]

movePlayer()). The variables to do with the player (such as playerX,
playerXSpeed, playerRadius, etc) will also go in there.

There are many places you could put the collision detection at this point. For
simplicity, best to leave it in the main tab where it was before you
implemented classes. You can access variables such as playerX by using the
dot notation. If you've called your Player object myPlayer, then accessing
playerX will be done through myPlayer.playerX.

[academy of code]

