
[the academy_of_code]

Grade 9

Unit 1
Advanced Classes

Lesson Links:

Lesson 1 - Classes Recap

Lesson 2 - Inheritance

Lesson 3 - Interfaces and Abstract

Lesson 4 - Making a GUI

Assessment 

www.theacademyofcode.com/handouts

1



Lesson 1 - Classes Recap

Learning Outcomes:

● Recap class basics

● Refresh your knowledge of 

class terminology

 REMEMBER: 

Put up your hand. We love 

to help!

2

You’ve Seen Classes Before

The first lesson of this unit will be relatively short. Everything covered here is 

stuff you’ve either explicitly seen before, or have seen by proxy of what we’ve 

had you do in relation to classes in the past. 

The purpose here is just to make sure you remember and understand 

everything you’re supposed to before we explore the real reasons classes are 

used and so important in programming.

Classes are Class

Knowing when and how to use classes really takes your programming ability to 

the next level. They are used to section our code into related chunks that 

describe some sort of thing in our code. They make the code we write easier to 

read, write and make changes to (called maintaining code).

Let’s do a quick recap of some of the important aspects of classes and their 

terminology. We’ll build a class while doing this to make things clearer and more 

interesting to follow.



3

Let’s Get Coding

● Open a new sketch and in a new tab called “Book”, let’s declare a class 
called “Book”:

● What are the properties that books have? Some basic ones are definitely a 
title, an author, the number of pages the book has, and even what page is 
currently open/what page the reader is currently at.

Let’s add variables (also known as fields in classes) to our class to store all 
this information.

Remember: While this class has some simple fields, nearly any variable type 
can be a field in a class, including other types of classes!

A “Book” Class
We’re going to create a class that represents a basic book, and explain all the 

jargon and processes as we go along.

Planning our class

Before we write any class we should think about what it represents, and the 

kinds of fields it’s going to need. In our case, It’s going to represent a Book. 

What properties about a book differentiate it from other Books?



4

The Constructor
Remember that a class is just a blueprint of something, it doesn’t actually 
represent the physical thing itself. That won’t exist until we instantiate an 
instance of our class.

Instantiating is what we do when we say something like “Book b = new Book();” 
in void setup(). The “Book()” part is us calling the constructor in the Book class.

The parameter list of a constructor can be empty. You can also choose to write 
an empty constructor, or omit it completely. If you do omit it yourself, java will 
add an empty one in behind the scenes so you’re still able to instantiate objects.

● Let’s add the constructor to the book class. When creating a book object, we 
need to specify the title, author and page count, but when we create a book 
the current page being read will always be 1.

this.
You’ll notice that we use this. for the first three but not the last one. this. is used 
when we need to differentiate between the parameter title and the book field title. 
We are setting the current books title (this.title) equal to whatever the value of 
the passed in parameter title (title) is.

There is no parameter passed in called currentPage (there is no need since it 
will be 1 for every book we create) so there is no need to say this.currentPage 
as there is no other currentPage variable to mix it up with. 

It’s done this way because it’s common java convention! In a weird 
counterintuitive sort of way, it also makes it easier to keep track of what variable 
is what.



5

● Let’s add some functions (also known as methods) to our book class that let 
us move to the next page, go to the previous page, and display what page 
we’re currently on (along with the title and author of the book).

You need to add three functions:
● read(): Displays the title, author and currentPage on the screen.
● nextPage(): Updates the currentPage to move up 1 (as long as they 

haven’t reached the end of the book!).
● previousPage(): Updates the currentPage to move down 1 (as long as 

they won’t arrive on page 0!).

● In your main tab, add in a void setup() and void draw(), create an instance of 
your book class and test out your functions. Use keyReleased() and your 
respective book functions for changing pages. Mine ended up looking like 
this:

Challenge Task
Create 2 more books and store all 3 of your books in an ArrayList. Use the 

number keys 1,2 and 3 to switch between which book you’re currently reading 

and displaying on the screen. 

Hint: Use get() along with an int to run the functions on the correct book.



Lesson 2 - Inheritance

Learning Outcomes:

● What is in inheritance

● How do we use inheritance

● Where do we use inheritance

 REMEMBER: 

Put up your hand. We love 

to help!

6

What is Inheritance

In this lesson we are going to learn about inheritance. Inheritance is a 

mechanism in Java that allows one class to inherit (to get) attributes (variables) 

and methods (functions) from another class.

This allows us to more easily reuse code and allows us to structure our code in 

an manner that is easier to change, understand, and maintain. It also allows us 

to make effective use of polymorphism in our programs, making them ultra 

flexible.

Uh… what?

If the section above was difficult to understand, that’s expected. Now that 

you’ve reached Grade 9, a lot of the topics are going to be a bit hard to wrap 

your head around at first. 

Remember, some people don’t learn about this stuff until their second year of 

university, so you making it to this point is pretty impressive. Take a moment to 

be proud of yourself, seriously.

To make inheritance as a concept slightly easier to understand, let’s run through 

an example of actually using it, which will let you see why it’s super useful and 

pretty cool.



7

Animals

Every animal is different. A dog and a cat look different, walk different, etc. But, 

they both sleep, they both breathe etc. The point is that while a dog and a cat 

are two different animals with different behaviours, at the end of the day they 

are both still an animal, and all animals sleep, breathe etc.

Previously, if we were to create classes for a dog and a cat in code, we would 

write the same functions for sleeping and breathing twice, one to go in the dog 

class and one to go in the cat class, even if the functions were exactly the 

same.

This is bad programming practice. We should try to remove all duplicate code if 

at all possible. This is where inheritance comes in to save the day. What we can 

now do instead is write a class Animal that contains methods for sleeping and 

breathing.

Then, we can write our dog and cat classes which will inherit from the animal 

class, allowing them to use the sleep and breathe functions that belong to the 

Animal class, without having those methods themselves.

Let’s Get Coding
● Open up a new sketch and create a new tab called Animal with the following 

class in it: 



8

Super Class and Sub Class

What we just did in step one on the previous page was create what is known as 

the Super class (also called the parent class). In the next step we are going to 

create the class Dog that inherits the functionality of Animal, the super class. 

The Dog class is then known as a sub class (also called the child class) of the 

super class Animal.

All inheritance is made up of super and sub classes connected to one another, 

with sub classes inheriting (gaining) the functionality and variables of it’s super 

class.

Sub extends Super
● Let’s create the Dog sub class. In a new tab called Dog, write the following 

code:

To let processing know that the class Dog is a sub class of the class Animal 

we use the keyword extends.

● Add the following code to your main program tab and run the program:

The Dog class has no method sleep() but can run it as it inherits it from Animal. 

Notice how we also don’t need to create an Animal object to inherit from it.



9

Method Overriding

You’ve seen Method Overloading before, where we can have the same 

function that takes in different parameters called the same thing, that can 

perform differently depending on the parameters it receives.

Method Overriding is when a method in a sub class is called the same thing as 

a method in one of it’s super classes. This can be used to give specific classes 

differing functionality for specific functions.

Time to Eat
Add a new function to the Animal class called eating, that just prints “Nom 

Nom Nom”.

● In the Dog class, add a method called eating that prints “The dog is too 

giddy to eat!”.

● Change your main program tab to look like this and run it:

When the eating() function is called on the sub class Dog, it uses the eating() 

function contained within the Dog class as the eating() function in the super 

class has been overridden.



10

super.

Sometimes, in a sub class, we want to perform some action unique to whatever 

class we’re in, but also do some functionality contained within the super class 

alongside it.

You can access any variables/methods contained within the super class from 

the sub class by using super.(whatever variable/function you want).

● In a new tab called Cat, create a new class Cat that is a sub class of 

Animal.

When the cat eats, we want it to print “Nom Nom Nom” but just before that, we 

also want it to print “The cat is hesitant but eats anyway.”

We can do this by overriding the eat function contained in animal, adding our 

own cat specific eating behaviour and then running the () function in the super 

class.

● Create a new Cat object and run cat.eating() at the end of void setup() and 

take a look at the output you get.

Please talk to your tutor about any questions you have 

about what you’ve just done, or things that you want to 

know that weren’t already mentioned!



11

SuperHero Fighting Game

You’re going to create a text based game where two superheroes will fight to the 

death! To do this, we’ll use a super class for the idea of a super hero, and the 

have sub classes for particular super heroes so that they can have slightly 

different stats and attacks.

● In a new sketch, create a new tab called SuperHero, and in here create a 

SuperHero class. This class should have the following:

○ An int, health

○ A string, name

○ An int, attackDamage

○ A constructor that creates a hero based on a passed in name. The 

heroes health should be set to 100, and their attackDamage should be 

a random number between 1 and 20.

○ A method “isDead” that return true if the superheroes health is <=0, 

and false otherwise.

● Add a method “attack” to the SuperHero class.

○ This method should take a SuperHero object as a parameter and 

subtract the attackers damage from the passed in SuperHero’s health 

pool.

○ If the health of the attacked falls below 0, set it = to 0.

○ Print a line to the console explaining what happened, who just attacked 

who with how much damage and how much health is left etc.



12

● Create two new SuperHero objects (called s1 and s2) in your main program 

and initialise them. Then copy the following for your void draw:

Run your program and you should see your two superheroes battle to the 

death!

● Our fights are a little bit boring right now, so let’s spice them up by creating 

some custom heroes by using inheritance. Create a new class called 

“SuperMan” that is a subclass of SuperHero (it inherits from SuperHero).

○ Superman should start with 150 health.

○ He should deal 25 damage, but has a 1/4th chance to take 25 damage 

instead of dealing damage (thanks to kryptonite!).

Remember: You can overload the attack function that belongs to the super 

class!

● Create a new sub class of SuperHero called Batman

○ Batman should have a variable “strength”, that decreases by 2 

everytime he attacks.

○ Batman should deal a random amount of damage each time he 

attacks, ranging from 2 damage to “strength” damage.

○ He should heal for 50% of the damage he deals each time he attacks.



13

Challenge Task
Create 2 more custom superhero child classes. These can be existing 

superheroes you know of, or you can model one after yourself or just make one 

or both up entirely.

Be creative with how each different superhero works. Remember that the 

SuperHero class is the baseline to work with. You may want the attack moveset 

specified in the super class with a few additional bits added on, and you can just 

call super.attack() in your new superheroes attack function and then add on 

extra functionality you want.

You may also have an idea for a new mechanic that all superheroes should 

have, which we now know should go in our Super class so it can be inherited, 

instead of us having to write the same code 4 different times.

The goal here is to be flexible and creative while reusing all the code we can 

where possible. Ask your tutor for fresh ideas, or for help on how you can inherit 

specific functionality you need if you’re a bit stuck.

Also don’t forget to take 5 minutes to balance your game a little bit!



Lesson 3 - Interfaces and Abstract

Learning Outcomes:

● Understand Abstract Classes and Interfaces, and when and 

why they’re useful

14

Let’s Get Abstract
Think about the Animal example we used to learn how inheritance worked 

in lesson 2. In reality there is no such thing as just “an animal”. You can 

have a dog, or a cat, or a giraffe, or a mouse, they’re all animals, but there 

is no animal that is just “an animal”. 

That is all to say that the idea of an animal is an abstract idea. It has no 

concrete, real implementation. We saw in lesson 2 that we could create an 

object from the class animal, but we now know that his really doesn’t make 

much sense.

What we should have done (and what we will do now in this lesson) is 

create an abstract animal class. A class in which we cannot instantiate 

(create an object from) but can have methods and be inherited from like 

other regular classes.

REMEMBER: If you have any questions, stay in your seat 

and put up your hand. We love to help!

Abstract Methods
An abstract class can have abstract methods. These are methods that don’t 

contain any body in the abstract class, but must be defined and written in 

any non abstract class that inherits from the parent abstract class. We’ll 

take a look at all of this using our animal example.



15

Creating an Abstract Inheritance Structure
Let’s create the animal class again, but this time we will define it as being 

an abstract class Animal. Give it a method called sleeping that prints three 

Z’s.

In void setup(), try and instantiate an animal object.

Our animal class is abstract, it is just an idea of something. Our program 

shouldn’t be able to have just “an animal” like we discussed already. So by 

making our class abstract, we prevent anyone from creating an animal 

object.

Concrete and Abstract Methods
In step 1 you saw we added a method to our class called sleeping(). This is 

because all animals sleep (that’s semantically debatable but still), so it’s fine 

to add in a method with functionality that all animals can inherit as it is the 

same for all of them. This is known as a concrete method. 

What do we do when we know that all animals should be able to move, but 

they all most drastically differently (dog vs. fish vs. snake) so a concrete 

method wouldn’t make sense? We can create an abstract method.



16

Adding an Abstract Method
Add an abstract method called “move” to our animal class. To do this just 

add the keyword abstract at the beginning of the method declaration. This 

method will have no body (no implementation).

There is no “default” movement for an animal. Some animals have very 

similar movement yes, like all animals with 4 legs, but the class we’re 

dealing with is describing the highest level idea of an animal.

Important: Because this method is abstract, any (non-abstract) class that 

inherits from the Animal class must provide an implementation for the 

move function. 

This is useful as we are now telling anyone that is creating a class for a 

specific kind of animal that it must be able to move and that they must be 

the one to provide the code to do it.

● In a new tab, create a class Dog that inherits from our animal class. When 

you first create it, you’ll see an error for the Dog class telling you that you  

need to implement a move() function! Add the following code to your Dog 

class:



17

● In void setup(), create an instance of your dog class and call the 

sleeping() and move() functions of the dog and see the output you get.

● Create two new classes for any animal of your choice that inherit from 

the animal class. And write the move functions for these animals

● Oh no! None of our animals have names! In the Animal class, add a new 

String variable called “name”. Add a constructor to your Animal class that 

takes in a String parameter and sets the name of the animal equal to the 

parameter.

● In your other three classes you’ll see an error saying that they all require 

a constructor now. Add a constructor to each child class that takes in a 

string parameter, and then calls the super constructor with that passed 

parameter.

Interfaces
Hopefully you can see how abstraction and abstract classes can be useful to 

keep other programmers in line, and even to help keep yourself on track. It’s 

nearly like planning in code, which is very handy.

Another way to achieve abstraction is to create and use an Interface. An 

interface is a completely abstract class with all methods having no bodies. 

While you extend a class, you implement and interface. You must implement 

all the functions defined in an interface when writing a class that implements 

the interface.



18

Interfaces (Cont’d)
Interfaces are really useful for describing a specific thing in your program that 

must do certain tasks/things, but where you don’t really care how it’s done as 

long as the end goal reached is the same.

Making and Using an Interface
Imagine you work for a big game development team. This team will soon 

start to add vehicles to the game their making. Your job is to make sure that 

all the vehicles are standardised, that they all do the things necessary for 

them to be called “a vehicle”.

How do you coordinate all the different developers? Do you go around 1 by 

1 and tell them what methods their vehicles objects need to have? No. 

The best way to do this is to create a vehicle interface. This way, once the 

other developers implement the interface, they know they have all the 

functionality required for their object to be considered a vehicle.

Let’s do the basic version of this now.

● In a new sketch, open a new tab and call it “Vehicle”. Create a new 

interface called Vehicle:

Now, what defines a vehicle? Well, it needs to move, it needs to have 

passengers, it needs to refuel etc. These are the methods we should add 

to the interface. 



19

● Add in the methods we need to define a vehicle. Remember we’re just 

sticking to the basics here so we’re going to say that for something to be 

considered a vehicle, it must be able to move, store passengers, store 

cargo and refuel:

All these function are void, but they could be any other return type as 

well, depending on what the function is needed to do/what you want it to 

do to make sure your vehicle objects work well with the rest of your 

program.

● Create a new class called Car. This class is going to implement the 

Vehicle interface:

There is currently an error on the car class. Remember that any class 

that implements an interface must implement all the methods outlined by 

the interface. There will be an error on the car class until all 4 methods 

have been written.

● Write the methods for the car class. Occasionally it will move, pick up a 

passenger or cargo, or stop to refuel. To do this you can just print to the 

console. 

You can trigger these events however you want, either randomly or using 

keyboard input etc.



20

Why Bother?
The game development company you’re working for comes back to you a 

few weeks later and says “*your name here*, we actually want to see our 

vehicles move around on the screen! Make it happen!”.

We could just alter the car class, adding in a display method and altering 

our move method to watch the car move in the processing window, it would 

give the company what they want. But what if someone wants to make a 

new vehicle in the future?

If they check the interface and use it correctly, they will likely break your 

program as when they try to run it and the display() method is called on 

their vehicle, well, they don’t have one, so it will break.

But if you instead add to your interface, specifying that every vehicle needs 

a display() method, all our problems go away. Vehicles will not work at all 

until they have all the methods they need, preventing anybody writing some 

bad/incomplete code. This is why interfaces are useful.

● Add a new method to your interface, display(). 

● Write the implementation of this method in the car class and edit the 

move method so that when you run your program you see a car moving 

around the screen (bouncing off the walls) that you can refuel and pick 

up passengers/cargo with.

● Add an Airplane vehicle. It should fly around at the top of the screen. 

Your passenger,cargo and refuel functions can be simple text again for 

this exercise.



Lesson 4 - Anonymous Classes & Runnables

Learning Outcomes:

● Learn how to make UI Buttons with Anonymous Classes 

and the Runnable class

21

Making a GUI with a Button Class

In the past, when you were making things like a menu screen or a settings 

menu, you probably coded up all the buttons, their collision detection and 

functionality separately. This was fine at the time as we didn’t have too 

many buttons overall that we were worried about.

But now that we’re becoming class at using classes, we can do it a much 

better way. We can instead make a new class, one that defines the 

blueprint of a button, containing all the functions needed for collision 

detection and drawing it on the screen etc.

Now all you’ll need to do is create a new button object for each button you 

want, and we’ll have repeatable, interactable buttons!

REMEMBER: If you have any questions, stay in your seat 

and put up your hand. We love to help!

Cookie Clicker

To demonstrate doing this, we’re going to make the game Cookie Clicker, 

which I’m sure you’ve heard of. It’s a good game to make when learning 

about this topic as the whole game is based on pressing/clicking buttons.

Let’s get clicking!



22

Making our Button Class
To start off, let’s make a button class. Cookie clicker has multiple different 

buttons you can click with different icons that do different things. To match 

this, we’re going to base our button class on PImages!

● In a new sketch, open a new tab and create a class called ImageButton. 

This class should have:

○ A PImage: image

○ Ints: xPos, yPos, w, h

● The constructor declaration should look like the following:

In the constructor, set all the variables to the given values, and load and 

resize the image.

● Add a method called drawButton that will draw the image at the x and y 

position given for the button.

● Finally, add another method called detectCollision that will perform 

rectangle collision detection with the mouse.

If a collision is detected, you should… wait… what goes inside the if 

statement? We’re supposed to be able to use this class for every button in 

our game, but if all our buttons do different things, then won’t the code 

inside the collision detection if statement need to be different every time?

Looks like we may have to just make a new different class for each button 

in our game, very tedious but some problems can’t be solved.

Or can they…



23

Anonymous Classes and the Runnable Interface
When we instantiate a button in void setup() (which we will get to), the 

problem is that we want to specify the functionality the button has when we 

create it. In other words, it would be great if we could pass in a button’s 

functionality (what it does when we click it) as a variable.

This isn’t possible in Java, but we can do basically the same thing using 

what’s known as an Anonymous Class. This is a class with no name, that 

can be declared when needed. If we create an anonymous class that 

implements the Runnable Interface, we will get a class we can declare with 

one method, run(), that contains the functionality we want the button to have.

Then we can just pass this class into our button constructor as a Runnable 

event, and run that event any time we click the button.

That likely didn’t make a lot of sense, but we’ll work through it as an example 

now so you can see it visually.

Also, this isn’t too important to understand fully. It’s more of a cool thing to 

show you that you will likely be able to use in future projects that need UI!

Cookie Clicker (For Real This Time)
● In this lesson we’re focusing on using Anonymous Classes, so to get to a 

baseline where we can start, download this starter setup for the cookie 

clicker game.

Take your ImageButton class you created, and paste it into a new tab in 

the cookie clicker project under the same name. The project should be 

runnable (but do nothing) once this is done. If not talk to your tutor to see 

if you can get it fixed before moving on from this step.

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html


24

● Take a few minutes to read through all the code given in the main file to 

get to grips with how it all roughly works. Theres just a few functions that 

draw shapes and text on the screen, and void draw is mostly concerned 

with calling those functions and drawing the buttons.

The drawWarning function will make more sense once your program starts 

running properly.

● First things first, we need to update our ImageButton class. Give this class 

a new variable of type Runnable called “event”: 

Add to the constructor declaration so that is also accepts a Runnable 

event parameter:

Don’t forget to assign the class’s “event” variable to the value of the 

parameter “event”!

● Let’s create a button now in void setup(). We’ll start with the easiest one, 

the main cookie, most of this is simple, except the last parameter, the 

Runnable event: 

We’ll deal with the ? next by replacing it with a Runnable object.

You might be wondering how we can create a Runnable 
object if Runnable is an interface. Runnable is one of the 
exceptions to the rule, as it is a functional interface that be 
used in things like lambda expression and method 
references, but you don’t need to worry about this.



25

● For the Runnable event parameter, we’re going to create a new Runnable 

object that has one method, run(). run() in this case should just increase 

the number of cookies we have by 1, as that’s what we want collision 

detection on this button to do: 

Note: This could all be done on one line, but it can be easier to read and 

understand if you break it into multiple lines like in the picture above.

● For anything to happen when we click this button, we need to finish the 

ImageButton classes detectCollision() method. 

For any particular button, we know that when we click that button, we want 

whatever functionality we wrote in that buttons run() method in it’s 

Runnable event to happen. So to do this, we can just say event.run()!

If you run your game now, your cookie count should increase by 1 every 

time you click the cookie! This is a lot of work for one button, but now we 

can add as many as we want, and to get different functionality, only the 

contents of run() needs to change instead of having to create a new class!



26

● Now that our framework is setup, we can just add in new buttons that 

should work. One of the basic items in cookie clicker is the cursor that 

adds increases our idle cookiesPerSecond by 1. Let’s add this in (you 

have the cursor image from the starter file). The run() method for this 

button will look like this: 

If you don’t have enough cookies to afford a cursor, we will display the 

warning for 5 seconds and then make it disappear, otherwise we will 

subtract the price (which you should set to 10 at the start) from your 

cookies total, increase the price to 110% of its current price, add a cursor 

and increase your cookiesPerSecond by 1.

● Add in 4 more buttons, one using the grandma image, with the other 3 

being whatever you want. You may need to do some resizing/rearranging 

of other things to make it look nice (maybe increase your screen width to 

fit 3 more buttons on the right side.

The grandma button should work the same way as your cursor button but 

should cost 50 to start with and increase your cookiesPerSecond by 10.

The other buttons can be whatever you want.



Assessment

Learning Outcomes:
● Be able to use Inheritance when needed to write better 

code
● Know how and when to use abstract classes/interfaces

27

Attention!
So far in your coding journey with us, you will have completed assessments 

for Grades 4, 5, 6 and 7. These were essentially small projects where you 

were told exactly what to do and given a time limit to do it, with limited to no 

help from your tutor.

This assessment will not be given a strict time limit, and you can ask for 

help like you normally would, if you need it. On the next page you will find 

the criteria for this project. While there is no definitive marking scheme, 

there are certain objectives you will need to fulfill for your project to be 

considered finished.

The Task
Remember the Bug Catcher game you made back at the end of Grade 7? 

There were a decent number of different bugs that, let’s be honest, at the 

time we didn’t deal with in a great way. This assessment requires you to 

build bug catcher (or a game of your choosing like it), but using what we’ve 

learned in this unit to make it “properly”.



28

Bug Catcher (Or Equivalent)
Remember that while these are technically a list of requirements, you’re at a 

stage now in grade 9 where you can talk to your tutor and discuss an 

alternate idea you have. 

As long as it’s the same level of work and complexity (and you’re making use 

of the important concepts covered in this unit) it should be fine to run with 

your own idea!

Basic Requirements:

● A character interface that your player character and enemy super 

class (see next point) should inherit from.

● A player class (that implements the character interface) that should 

be able to move left and right and be seen on the screen. 

● Your enemy (that implements the character interface) should be 

described using an abstract class, that may have none, one, or more 

than one concrete method(s).

● You should have at least 4 different enemy archetypes that inherit 

from your abstract enemy superclass, all with their own unique 

variations (like a super fast enemy, a bigger enemy, an enemy that 

helps you in one way and is a detriment in another way etc. Look 

back at the bug catcher lesson for some basic ideas.)

● Collision detection between the player and the enemies, (each 

collision will result in different things happening just like in bug 

catcher, but this will be easily written in void draw as long as your 

enemy classes are written well).

● Some form of win/lose condition

When you’ve finished the basic game, go to the next page to see how to 

polish and finish it.



29

Game Polish and Extras: 

● Add in a UI to your game. This would include a main menu and 

game over screen. There should be a settings menu where you can 

adjust some game parameters (see next point) and a menu button 

available to click while playing the game. 

Make a button class and use anonymous classes and the runnable 

interface to make your UI.

● The settings menu should let you change some game parameters. 

Here are some ideas:

● Change rate at which enemies appear from the top of 

the screen

● Change the players move speed

● Change difficulty (by raising points needed to 

win/lowering lives etc.)

● Add a new enemy sub class to one of your existing enemy 

implementations so that it behaves and looks exactly like that enemy 

(you decide which one). This new enemy should be one that spawns 

in very rarely. If you hit this enemy, the whole program should just 

exit.


