
Lesson 3 - Regular Expressions

Learning Outcomes:

● What are regular expressions

and how to use them

 REMEMBER:

Put up your hand. We love

to help!

22

Regular Expressions

Regular expressions, or regex for short, are used to find specific patterns in text. It

does this by using a special set of characters to indicate what you want to match.

These expressions can be simple, but they are often quite long and complicated and

can be difficult to understand. We will learn the basics of writing regexes in this

lesson. We will begin by looking at this regex

"^[a-z0-9._%+-]+@[a-z0-9.-]+\\.[a-z]{2,}$" or the simplified version

"[a-z0-9._%+-]+@[a-z0-9.-]+.[a-z]{2,}"

Matches function

The matches function returns a boolean and tells you if the string you are looking at
matches the string you are searching for.

Below are two example pieces of code. Note that a lowercase t is not the same as an
uppercase T.

But what if we want to match for any three letter word. We can use the “.” symbol to
indicate any character. If we use three dots we will match any three letter word. We
can also change any of the dots to match three letter words that have specific
characters. Try the two examples below and change the word.

23

Regexes

● What about if we only want to match strings that start with a specific set of

characters, but don’t care how long it is? To do that we use the “+” symbol. This

allows there to be more than one of the preceding character and still match.

● We can also tell it how many to match. We do this using the {} symbols, with a

number. This will first match the T and then match two of any character.

● This can be changed to match a range of characters after the T, between 2 and 5

characters.

● If we want to match a range of characters we can simply write the characters

between square brackets []. This will match any three letter word that only

contains vowels.

● We can do this in another way if the characters we want to match are in order.

The example below will match any three letter word that only contains lowercase

letters.

● We can change this to also match with uppercase letters, spaces and any length

of a string.

24

Challenges

● Write a regex to match the words [“the”, “are”, “use”, “one”], but not the words

[“there”, “they”, “I”, “we”]

● Write a regex to match the words [“the”, “there”, “they”, “two”], but not the words

[“are”, “use”, “I”, “we”]

● Write a regex to match the words [“had”, “bad”, “hide”, “a”], but not the words

[“academy”, “two”, “I”, “we”]

● Write a regex to match the words [“aeo”, “iou”, “eee”, “aee”], but not the words

[“ate”, “eat”, “hid”, “aeee”]

● Write a regex to match the words [“hat”, “cat”, “cut”, “about”], but not the words

[“ate”, “eaten”, “hid”, “well”]

● Write a regex to match the words [“wood”, “wool”, “loop”, “pool”], but not the

words [“cold”, “old”, “told”, “well”]

● Write a regex to match the words [“wood”, “woolen”, “would”, “woken”], but not

the words [“woolenly”, “old”, “told”, “wad”]

25

Regexes

● We can also use the ^ to indicate the characters that we don’t want to match.

The example below will match anything that doesn’t contain lowercase letters.

● There are several special characters that you can use in a regex that are

shorthand for things we are already able to do. The first of these is “\\d”. This

matches with any digit.

● If we capitalise the letter it will do the opposite.

● “\\s” will match with whitespace. “\\w” will match with word characters, which

seems to include letters and digits.

● Previously we used the “+” symbol to match with strings of any length. In the

example below we want to know if the word starts with the letter a. This works

fine if there are at least two letters, like in the code below. Unfortunately the “+”

symbol requires that there is at least one character matching it.

● To fix this we use the “*” symbol. This doesn’t require there to be an additional

character to match with the “.”.

26

Challenges

● Write a regex to match the words [“oo”, “wool”, “loop”, “pool”], but not the words

[“cold”, “old”, “told”, “well”]

● Write a regex to match the words [“1234”, “0000”, “4312”, “7777”], but not the

words [“123o”, “12345”, “000”, “100.”]

● Write a regex to match the words [“had”, “bad!”, “hide.”, “a”], but not the words

[“academy10”, “2”, “10.”, “well!123”]

● Write a regex to match the words [“the”, “t”, “they”, “there”], but not the words

[“ate”, “eat”, “hid”, “aeee”]

● Write a regex to match the words [“hid”, “riddance”, “hiding”, “harriett”], but not

the words [“ate”, “eaten”, “absent”, “well”]

● Write a regex to match the words [“102A”, “900D”, “600H”, “555T”], but not the

words [“102a”, “old”, “1000DS”, “H500”]

27

replaceAll

● So far we have only looked at matching text, but often once we match the text we

want to change it. We can do this using the replaceAll function. The example

below shows us replacing all of the vowels with the * symbol.

● The replace all function can also be used to just remove characters. The code

below find anything that is not a vowel and replaces it with nothing.

● Then we can use the string’s length function to determine how many vowels were

in the original string. Note: Be careful doing this if you need to keep the original

string.

28

Challenges

● How Many Vowels -

Link: https://edabit.com/challenge/GBKphScsmDi9ek3ra

● Vowel Replacer - Hint: You will need to convert the char into a string.

Link: https://edabit.com/challenge/iW7rtor54mbFQ2RrZ

● Owofied a Sentence - Hint: Look back at the strings and arrays lesson.

Link: https://edabit.com/challenge/nuKniCXYbaCfrmjgX

● Remove Every Vowel from a String -

Link: https://edabit.com/challenge/oMCKfdMqgt9kxqA2M

● Hashes and Pluses -

Link: https://edabit.com/challenge/s8RHRY9hfmvYMuaeC

● Transforming Words into Binary Strings

Link: https://edabit.com/challenge/jwzMsyo2tbgn2KbGQ

● Letters Only -

Link: https://edabit.com/challenge/HPcr7REWMLTosoXME

● ATM PIN Code Validation - Hint: You can use the | (or) symbol to help solve this,

so try break the problem into parts and solve each part.

Link: https://edabit.com/challenge/bL2E8p5DGWSNmEtAE

● Valid Hex Code - Note: Marked as Medium difficulty.

Link: https://edabit.com/challenge/9zBJYnBekqAo52zEp

https://edabit.com/challenge/GBKphScsmDi9ek3ra
https://edabit.com/challenge/iW7rtor54mbFQ2RrZ
https://edabit.com/challenge/nuKniCXYbaCfrmjgX
https://edabit.com/challenge/oMCKfdMqgt9kxqA2M
https://edabit.com/challenge/s8RHRY9hfmvYMuaeC
https://edabit.com/challenge/jwzMsyo2tbgn2KbGQ
https://edabit.com/challenge/HPcr7REWMLTosoXME
https://edabit.com/challenge/bL2E8p5DGWSNmEtAE
https://edabit.com/challenge/9zBJYnBekqAo52zEp

29

Additional resources

● In the this lesson we have covered the basics of how a regex works. There is a

lot more to learn about how to use regexes, but now that you know the basics

you are better equipped to learn the more about the more complicated parts on

your own.

● Below are some helpful links I found, remember Google is always a good option

for learning new material.

● https://www.tutorialspoint.com/java/java_regular_expressions.htm

● https://regex101.com/r/cO8lqs/2

● https://medium.com/factory-mind/regex-tutorial-a-simple-cheatsheet-by-examples-649dc1c3f285

https://www.tutorialspoint.com/java/java_regular_expressions.htm
https://regex101.com/r/cO8lqs/2
https://medium.com/factory-mind/regex-tutorial-a-simple-cheatsheet-by-examples-649dc1c3f285

