
Lesson 8

Introduction to User-Defined Functions

We’ve used lots of different functions up to now. print() is a function which prints text to the
output console, append() is a function which adds an item to a list, and so on. Someone else
has defined these functions for us, and they allow us to easily perform tasks in Python.

We can also write our own functions. These allow us to bundle up code that does a specific job
(especially if that job might be repeated a lot of times) and put it outside of our “main code”.
Often it reduces the amount of code we have to write, but more importantly it should always
make our code neater and easier to follow.

Defining a Function

First of all we need to write the code that will be executed when the function is called. Below is a
function that asks the user their favourite colour and prints out the result.

def FavouriteColour():
 colour = input("What is your favourite colour? ") # ask user favourite colour
 print("My favourite colour is " + colour)

● def - this tells the computer you want to define a new function.
● FavouriteColour(): - this is the name of the function you are defining, followed by a colon

 (“:”) with the code inside the function indented.

The indented code is all of the code that will be executed when the FavouriteColour() function
is called in our main code.

Calling a Function

After we have defined the function in our code, we need to call the function in the main part of
our code. We need to define a main function which will be used to call our user-defined
functions and will have all of the rest of our code.

def main(): # define main function
 FavouriteColour() # call the function

At the moment, we are just calling FavouriteColour() inside our main() function but in the future
we will have more than just one function call inside main().

The final step is to call the main() function so the code will be executed.

if __name__ == '__main__':
 main() # call main() function

The if statement will execute the main() function if the python interpreter is running that
module (the source file) as the main program (you don’t need to worry about this!).

So if we put all of our code together, it will look like this:

def FavouriteColour():
 colour = input("What is your favourite colour? ") # ask user favourite colour
 print("My favourite colour is " + colour)

def main(): # define main function
 FavouriteColour() # call the function

if __name__ == '__main__':
 main() # call main() function

Tasks:

1. Copy and run the code above.
2. Define a function that asks the user to input two numbers.
3. Add the numbers together and print the result.

4. If the number is odd, print “odd number. Or else, print “even number”.

Note: to check whether a number is odd or even we need to use the modulo operator
 (%).

if number%2 == 0: # 2 divides evenly into number
 # even number
else: # 2 does not divide evenly into number
 # odd number

5. Call the function in main().

Snowstorm Project

We can also draw more advanced shapes using Tina the Turtle, along with loops and
functions. The goal of this project is to draw snowflakes on the screen, that we can later
customize.

Tasks:

1. Import the Turtle module, initialize Tina the Turtle, set the pen size to 6 and the pen
colour to white.

2. Make a coloured background by getting the turtle window and setting a colour for it.

screen = turtle.Screen()

screen.bgcolor("turquoise")

3. Define a function called vshape, to draw the first bit of the snowflake in the shape of a

‘v’.

def vshape():

4. Place the instructions to draw the ‘v’ shape into the function.

tina.right(25) # turn right 25 degrees
tina.forward(50) # go forward 50 pixels
tina.backward(50) # go backwards 50 pixels
tina.left(50) # turn left 50 degrees
tina.forward(50) # go forward 50 pixels
tina.backward(50) # go backwards 50 pixels
tina.right(25) # turn right 25 degrees

5. Declare and call your main() function which will be used to call the vshape() function.

def main(): #define main function
 vshape() # call function

if __name__ == '__main__':
 main() # call main function

Run your code to see what happens!

6. Define a new function called snowflakeArm(), to turn the ‘v’ shape into one ‘arm’ of the
snowflake.

def snowflakeArm():

7. Place the instructions to draw the snowflake arm by drawing a ‘v’ multiple times in

different locations.

for i in range(0,4): # for loops runs 4 times
 tina.forward(30) # go forward 30 pixels
 vshape() # draw 'v' shape

tina.backward(120) # go back 120 pixels (to centre)

Call snowflakeArm() in your main function (take out vshape()) and run your code!

8. Define another function to draw a whole snowflake, using a for loop to repeat the

snowflake arm that you just made.

def snowflake():
 for i in range(0,6): # for loops runs 6 times
 snowflakeArm() # draw snowflake arm
 tina.right(60) # turn right 60 degrees

Call snowflake() in your main function (take out snowflakeArm()) and run your code!

9. Run your code!

We can use the random module to make a multi-coloured snowflake by choosing a random
colour from a list of different colours.

Tasks:

1. Import the random module at the top of the program.

import random

2. Delete the line that sets the pen colour (so we can use different colours).

tina.pencolor("white") # DELETE THIS LINE

3. Set up a list of colours that our snowflake arms can be and insert it after the line that sets

the background.

colours = ["blue","purple","cyan","white","yellow","green", "red","pink","orange"]

4. Pick a random colour from the list for each snowflake arm. This involves adding an extra

line in the for loop in the snowflake() function.

def snowflake():
 for i in range(0,6):
 tina.color(random.choice(colours))
 snowflakeArm()
 tina.right(60)

Note: If you want each snowflake to be a single colour, move this line above the for loop.

5. Run your code!

Now we are going to use the random module to fill the screen with coloured snowflakes of
different sizes and in different positions on the screen.

Tasks:

1. To vary the size of the snowflakes, we need to add a ‘size’ variable to the snowflake()
function.

def snowflake(size):
 for i in range(0,6):
 tina.color(random.choice(colours))
 snowflakeArm(size)
 tina.right(60)

2. We also need to add this new ‘size’ variable to the vshape() and snowflakeArm()

functions, to replace the numbers in forward and backward commands.

def vshape(size):
 tina.right(25)
 tina.forward(size)
 tina.backward(size)
 tina.left(50)
 tina.forward(size)
 tina.backward(size)
 tina.right(25)

def snowflakeArm(size):
 for i in range(0,4):
 tina.forward(size)
 vshape(size)
 tina.backward(size*4)

3. In your main() function, use a for loop to draw several snowflakes, each with its own size
and position chosen at random.

for i in range(0,10): # for loop runs 10 times
 size = random.randint(5,30) # picks a random size between 5 and 30
 tina.pensize(random.randint(1,7)) # picks a random pen size between 1 and 7
 x = random.randint(-150,150) # picks a random x-coordinate between -150 and 150
 y = random.randint(-150,150) # picks a random y-coordinate between -150 and 150
 tina.penup() # don't draw when turtle moves
 tina.goto(x,y) # go to random position
 tina.pendown() # start drawing again
 snowflake(size) # draw snowflake

4. Save and run your code!

Extra Tasks:
1. Make every second snowflake you draw a 10-arm snowflake. At the moment you are

drawing a 6-arm snowflake by having the for loop run 6 times and turning by 60°, so you
will need to change the for loop to run 10 times and ensure the turtle turns right 36°
when you want to draw the 10-arm snowflake.

Note: This will require you to test whether the current value of the for loop used to draw
 the 10 snowflakes is on an odd or even index. If its odd, draw the 6-arm
 snowflake, or else if its even, draw the 10-arm snowflake.

Note: You will also have to pass in something to your snowflake() function to know
 when to change the values in the for loop and the turn angle. One way of
 accomplishing this may be to use a boolean (a variable that can be True or
 False). Declare a boolean at the top of your code.

odd = False # Boolean variable set to False at the start

 Then, if the index of the for loop is even(explained above), set “odd” to “False”.
 Or else if the index is odd, set “odd” to “True”.

for i in range(0,10):
 if i%2 == 0: # no remainder, so index is even
 odd = False # set boolean to False
 else: # one remainder, so index is odd
 odd = True # set boolean to True

 # Rest of code to draw snowflakes

You can then pass your “odd” variable into your snowflake() function and you it
to conditionally draw your snowflakes.

def snowflake(size, odd):
 if odd == True: # if "odd" boolean is True
 for i in range(0,6): # draw 6-arm snowflake
 tina.color(random.choice(colours))
 snowflakeArm(size)
 tina.right(60)
 else: # else "odd" boolean is False
 for i in range(0,10): # draw 10-arm snowflake
 tina.color(random.choice(colours))
 snowflakeArm(size)
 tina.right(36)

 snowflake(size, odd) # draw snowflake

